84 research outputs found

    Zur Beurteilung von AR-Glasfasern in alkalischer Umgebung: Evaluation of AR-glas fibres in alkaline environment

    Get PDF
    AR-Glas wird in Form von Multifilamentgarn zur VerstĂ€rkung in textilbewehrtem Beton eingesetzt. WĂ€hrend des Herstellungsprozesses wird auf die AR-Glasfilamente die Schlichte aufgebracht, deren chemische Zusammensetzung maßgeblich die QualitĂ€t der Filament-Matrix-Grenzschicht bestimmt, sowie die chemische BestĂ€ndigkeit im alkalischen Milieu gewĂ€hrleistet. Zur Beurteilung der chemischen BestĂ€ndigkeit in alkalischer Umgebung werden beschleunigte Alterungsversuche in wĂ€ssrigen, alkalischen Lösungen durchgefĂŒhrt. Die Reaktion von Hydroxid-Ionen mit dem Si-O-Si-Gruppen des Glasnetzwerkes fĂŒhrt zur Ausbildung hydratisierter OberflĂ€chen und gelösten Silikaten. Das Ausmaß der Glaskorrosion ist von der chemischen Zusammensetzung der Glasfaser, der Schlichte bzw. Beschichtung und der alkalischen Lösung sowie von Zeit und Temperatur abhĂ€ngig. Die beschleunigte Alterung von verschiedenen AR-Glasfasern in NaOH-Lösung sowie Zementlösung zeigt, dass sich der Korrosionsmechanismus aufgrund der vorhandenen Calcium-Ionen unterscheidet. Die Filamentbruchspannung wird anhand der Weibull-Verteilungsfunktion analysiert. Das mechanische Verhalten hĂ€ngt deutlich von der chemischen Zusammensetzung der Alterungslösung ab, was zu unterschiedlichen Parametern der Weibull-Verteilungsfunktion sowie vermengten Verteilungen fĂŒhren kann. Die Alterung in NaOH-Lösung fĂŒhrt zur Ausbildung einer korrodierten Schicht an der FilamentoberflĂ€che. In Ca-haltigen Zementlösungen kommt es dagegen zu einer lokal begrenzten Korrosion. FĂŒr die Beurteilung verschiedener Polymerbeschichtungen werden Betonverbunde bei unterschiedlichen Temperaturen und Umgebungsfeuchten gelagert, wodurch geeignete Alterungsbedingungen evaluiert werden und den Vergleich der chemischen BestĂ€ndigkeit unterschiedlicher Beschichtungen ermöglichen.Rovings made of AR-glass are used in textile reinforced concrete. During the manufacturing process the sizing is applied on the AR-glass filaments. The chemical constitution of the sizing determines the quality of the filament-matrix-interface but also the chemical durability of the glass filaments in alkaline environment. The durability is evaluated by accelerated ageing tests in aqueous, alkaline solutions. In alkaline solutions, the reaction of hydroxyl ions with Si-O-Si-groups of the glass network leads to the formation of hydrated surfaces and dissolved silicate. The rate of this corrosion depends on the chemical constitution of the fibre and the alkaline solution as well as on time and temperature. The investigation of the ageing of glass fibres with different chemical constitutions in NaOH and cement solutions shows that the corrosion mechanism changes due to the inhibiting effect of calcium ions. The strength distributions have been evaluated using a Weibull distribution function. The mechanical behaviour strongly depends on the chemistry of the solution and determines the parameters of the Weibull distribution function in terms of either single or mixed distributions. The corrosion in NaOH solution leads to a strong dissolution of the outer layer of the glass fibres, whereas during aging in cement solution at the same pH-value a limited, local attack was revealed. The evaluation of polymer coatings is realised by the ageing of concrete composites at different temperatures and humidities to deduce adequate ageing conditions for the comparison of different coatings

    Polymeric Coatings for AR-Glass Fibers in Cement-Based Matrices: Effect of Nanoclay on the Fiber-Matrix Interaction

    Get PDF
    Polymeric coatings are widely used to enhance the load bearing capacity and chemical durability of alkali-resistant glass (AR-glass) textile in cement-based composites. The contact zone between coated yarns and concrete matrix plays a major role to enable the stress transfer and has still to be improved for the full exploitation of the mechanical behavior of the composite. As a new approach, this paper studies how the addition of nanoclay particles in the polymer coating formulation can increase the chemical bond between organic coating and inorganic matrix. This includes the description of the water-based coating preparation by dispersing sodium montmorillonites, whereby the resulting coating nanostructure is characterized by X-ray diffraction and energy dispersive X-ray spectroscopy. Single glass fibers were treated by dip-coating. Atomic force microscopy was used to determine the surface roughness, and the effect on the fiber tensile properties was studied. Moreover, the morphological and chemical characteristics of the coatings were compared with the results obtained from single fiber pull-out (SFPO) tests. It was shown that the incorporation of nanoclays leads to increased interfacial shear strength arising from the ability of nanoclay particles to nucleate hydration products in the fiber-matrix contact zone

    Dynamic Single-Fiber Pull-Out of Polypropylene Fibers Produced with Different Mechanical and Surface Properties for Concrete Reinforcement

    Get PDF
    In strain-hardening cement-based composites (SHCC), polypropylene (PP) fibers are often used to provide ductility through micro crack-bridging, in particular when subjected to high loading rates. For the purposeful material design of SHCC, fundamental research is required to understand the failure mechanisms depending on the mechanical properties of the fibers and the fiber–matrix interaction. Hence, PP fibers with diameters between 10 and 30 ”m, differing tensile strength levels and Young’s moduli, but also circular and trilobal cross-sections were produced using melt-spinning equipment. The structural changes induced by the drawing parameters during the spinning process and surface modification by sizing were assessed in single-fiber tensile experiments and differential scanning calorimetry (DSC) of the fiber material. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements were applied to determine the topographical and wetting properties of the fiber surface. The fiber–matrix interaction under quasi-static and dynamic loading was studied in single-fiber pull-out experiments (SFPO). The main findings of microscale characterization showed that increased fiber tensile strength in combination with enhanced mechanical interlocking caused by high surface roughness led to improved energy absorption under dynamic loading. Further enhancement could be observed in the change from a circular to a trilobal fiber cross-section

    Beschleunigte Alterung von Glasfasern in alkalischen Lösungen: EinflĂŒsse auf die mechanischen Eigenschaften

    Get PDF
    In alkalischen Lösungen fĂŒhrt die Reaktion von Hydroxylionen mit den Si-O-Si-Bindungen des Glasnetzwerks zur Bildung hydratisierter OberflĂ€chen und gelöstem Silikat. Der Grad der Korrosion bzw. der Alterung der Glasfaser ist abhĂ€ngig von der chemischen Zusammensetzung des Glases und Korrosionslösung sowie von Zeit und Temperatur. Die Untersuchung von Glasfasern verschiedener chemischer Zusammensetzung in NaOH- sowie Zementlösungen zeigte, dass die inhibierende Wirkung von Ca-Ionen zu einem verĂ€nderten Korrosionsmechanismus fĂŒhrt. Dies konnte anhand der mechanischen Eigenschaften der Glasfasern sowie rasterelektronenmikroskopischen Untersuchungen gezeigt werden. WĂ€hrend die Korrosion in NaOH-Lösung zu einer ausgeprĂ€gten Umwandlung der gesamten Ă€ußeren Glasfaserschicht in Reaktionsprodukte fĂŒhrte, zeigten Glasfasern in Zementlösung bei gleichem pH-Wert einen stark lokal begrenzten, punktförmigen Angriff. Daraus resultieren unterschiedliche mechanische Eigenschaften der Glasfasern in AbhĂ€ngigkeit von der gewĂ€hlten Korrosionslösung

    Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Get PDF
    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism

    A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates

    Get PDF
    The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates
    • 

    corecore